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ABSTRACT 

When a ceramic i s  brought  i n t o  c o n t a c t  w i t h  a meta l  or a po l ymer i c  

m a t e r i a l  such as a magnet ic medium, s t r o n g  bonds f o r m  between t h e  m a t e r i a l s .  

For ceramic-to-metal  c o n t a c t s ,  adhesion and f r i c t i o n  a re  s t r o n g l y  dependent on 

t h e  d u c t i l i t y  o f  t h e  meta ls .  

r o l e  i n  adhesion and f r i c t i o n  than does t h e  surface energy o f  me ta l s .  

Hardness of meta ls  p l a y s  a much more i m p o r t a n t  

Adhesion, f r i c t i o n ,  s u r f a c e  energy, and hardness o f  a metal  a re  a l l  r e l a t e d  t o  

i t s  Young's modulus and shear modulus, which have a marked dependence on t h e  

e l e c t r o n  c o n f i g u r a t i o n  o f  t h e  me ta l .  An i nc rease  i n  shear modulus r e s u l t s  i n  

co cn 
Ln 

I w 
d 

adhesion and f r i c t i o n  decrease w i t h  

For ceramics i n  c o n t a c t  w i t h  PO 

ex t reme ly  i m p o r t a n t .  For example, a n i t r o g e n  

f r i c t i o n  when f e r r i t e  c o n t a c t s  p o l y m e r i c  tape 

s t reng thens  t h e  f e r r i  te- to- tape adhesion and 

f r i c t i o n  a r e  s t r o n g l y  dependent on t h e  p a r t i c  

a decrease i n  a rea  of c o n t a c t  t h a t  i s  g r e a t e r  t han  t h e  corresponding i n c r e a s e  

i n  surface energy ( t h e  bond energy) w i t h  shear modulus. Consequent ly,  t h e  I 

nc reas ing  shear modulus. 

ymer ic  magnet ic tapes,  environment i s  

environment reduces adhesion and 

whereas a vacuum envi ronment  

ncreases f r i c t i o n .  Adhesion and 

e l o a d i n g  o f  t h e  tape .  An 

c l e  c o n c e n t r a t i o n  i nc reases  t h e  complex modulus of 

area o f  c o n t a c t  and lower f r i c t i o n  r e s u l t .  

i n c r e a s e  i n  magnet ic p a r t  

t h e  tape,  and a lower  r e a  

1.  INTRODUCTION 

The h i g h  s t r e n g t h  and wear r e s i s t a n c e  of many advanced ceramics such as 

s i l i c o n  c a r b i d e  have r e s u l t e d  i n  a s teady i nc rease  i n  t h e  number and e x t e n t  o f  

ceramic wear a p p l i c a t i o n s .  These range from components o f  advanced engines,  



such as bearings and seals, to magnetic heads in magnetic storage systems. 

Further, the demands for operating in more extreme temperatures, chemical 

environments, space environments, and for longer operating times i n  poorly 

accessible locations are further accentuating the use of ceramics for high 

wear resistance. Although there i s  a significant present and future need for 

wear-resistant ceramics, the successful use of ceramics in these applications 

is limited more oftei by tribological requirements than by material properties 

or process deficiencies [l-41. Clearly, there is a limited basic understanding 

o f  the surface interactions of ceramics with themselves and other materials 

C4-71. 

The objective of this paper is t o  discuss the fundamental nature of 

adhesion and friction of ceramics in contact with metals and polymeric 

magnetic tapes. 

2. M A T E R I A L S  

Hot-pressed polycrystalline magnesia-doped silicon nitride was used in 

the adhesion experiments. Other materials used in this investigation were 

( 1 )  single-crystal silicon carbide platelets, which were a 99.9 percent pure 

compound of silicon and carbon with the basal plane parallel to the interface, 

(2) hot-pressed polycrystalline manganese-zinc ferrite and nickel-zinc ferrite 

platelets that were 99.9 percent pure oxide, ( 3 )  polycrystalline metals 

(titanium was 99.97 percent pure, and all other metals were 99.99 percent 

pure), and (4) magnetic tapes with different magnetic particle loadings 

consisting of chromium oxide powders coated on a polyester film backing. 

magnetic particle loadings of the tapes (magnetic particle concentrations on a 

polymeric blnder) were 45, 50, 55, and 5 8  percent. A higher particle loading 

results i n  a greater complex modulus of the tape [81. 

The 

The complex modulus was 

I measured with a dynamic-mechanical-analysis system and was given by the ratio 
I of the maximum stress t o  the maximum strain C81. 
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3. APPARATUS 

The apparatus used in this investigation consisted of an ultrahigh vacuum 

The vacuum system system capable o f  measuring adhesion and friction (fig. 1). 

contained an x-ray photoelectron spectroscopy analysis system. 

for measuring adhesion and friction was basically a pin-flat configuration, as 

shown schematically in figure 1 .  

The mechanism 

For the adhesion experiments, a manipulator-mounted torsion balance was 

used (see fig. 1). The pin specimen was mounted on one end of a movable arm. 

A free-moving, rod-shaped magnetic core was mounted on the other end of the 

arm. The co i l s  of a linear variable differential transformer (LVDT) were 

mounted on a stationary arm. 

movable magnetic core and the coil structure. The movable arm was supported 

by a single strand o f  wire acting as a torsion spring. 

mounted on a specimen holder attached to a manipulator. 

allowed measurements of pull-off force as small as 1 pN in vacuum C91. 

There was no physical contact between the 

The flat specimen was 

This torsion balance 

For the friction measurements, a manipulator-mounted beam was projected 

into the vacuum chamber (again see fig. 1). The beam contained two pairs of 

flats assembled normal to each other with strain gages mounted thereon. The 

pair flats were parallel to each other. The end o f  the beam contained the pin 

specimen. 

other manipulator. 

deflecting the beam was sensed by strain gages. 

applied load was measured during vertical translation by strain gages mounted 

normal to those measuring the load. 

4 .  EXPERIMENTAL PROCEDURES 

4.1 Specimen Preparation 

The flat specimen was mounted on a specimen holder attached to the 

A load that was applied to the pin-flat contact by 

The friction force under an 

The contacting surfaces o f  the ceramic and metal specimens, which were 

either hemispherical or flat, were polished with diamond powder and aluminum 
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oxide power, each 1 pm in diameter. The specimens were rinsed with absolute 

ethanol prior to the experiments. 

(Rmax, maximum height of irregularities) was about 0.1 pm or less. 

of curvature of the pins were 0.8 or 1.6 mm. 

The surface roughness of the polished faces 

The radii 

The flat magnetic tape specimens, mounted on 304 stainless steel platform 

supporting sheets, were used only in the as-received state. 

4.2 Procedures 

4.2.1 Ceramic-to-Metal Contact 

The metal pin and ceramic flat specimens were placed in the vacuum 

The system was evacuated and baked out t o  achieve a pressure of chamber. 

30 nPa. 

ion-sputter etched with a 3000-eV beam energy at a 20-mA beam current and a 

0.7-mPa argon pressure. 

specimen surface. After sputter etching, the system was reevacuated to a 

pressure of 30 nPa or lower. In situ pull-off force (adhesion) and friction 

measurements were then made with the ion-sputter-cleaned pin and flat 

specimens in a 30-nPa vacuum. 

In adhesion experiments, contact was maintained for 30 sec; then pin and 

Pin and flat surfaces of the ceramic and metal specimens were 

The ion beam was continuously rastered over the 

flat specimen surfaces were pulled apart [91.  

contact before sliding was also maintained for 30 sec. 

was 3 mm/min. The surface cleanliness of the pin and flat specimens was 

verified by x-ray photoelectron spectroscopy analysis. 

For friction experiments, 

The sliding velocity 

4.2.2 Ceramic-to-Magnetic Tape Contact 

It is extremely difficult to remove adsorbed contaminants from such 

magnetic media as polymeric magnetic tape surfaces. Indeed, no entirely 

satisfactory cleaning procedure has yet been established for magnetic tapes. 

Therefore, the tape specimens used both in dry nitrogen atmosphere and in 

vacuum were as-received. Four sets o f  experiments were conducted. The 
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specimens w e r e  p laced  i n  t h e  vacuum chamber, and f o r  t he  first s e t  o f  

exper iments,  t he  chamber was f i l l e d  w i t h  d r y  n i t r o g e n .  Then as-received 

f e r r i t e  p i n  specimens s l i d  on as-received tape sur faces i n  t h e  d r y  n i t r o g e n  

atmosphere. 

For t h e  second s e t  of exper iments,  t he  s y s t e m  was evacuated to achieve a 

p ressu re  of 1 pPa a t  room temperature w i t h o u t  bak ing  o u t ;  then as-received 

f e r r i t e  p i n  specimens s l i d  on as-received tape su r faces  i n  vacuum a t  1 pPa. 

For t h e  t h i r d  and f o u r t h  s e t s  of exper iments,  t h e  system was evacuated 

and baked o u t  t o  achieve a p ressu re  of 30 nPa, and t h e  f e r r i t e  p i n  specimens 

were argon i o n - s p u t t e r  c leaned. I n  t h e  t h i r d  s e t  o f  exper iments,  specimens 

a p ressu re  o f  30 nPa. 

000-L oxygen and then t h e y  

a p ressu re  o f  30 nPa. 

I n  s l i d  on tape su r faces  i n  t h e  

the  f o u r t h  s e t ,  t h e  p i n  spec 

s l i d  on tape su r faces  i n  t h e  

5. RESULTS AND DISCUSSION 

system reevacuated t o  

mens w e r e  exposed t o  

s y s t e m  reevacuated to  

5 . 1  Ceramic-to-Metal Contact  

5.1.1 Nonoxide Ceramics 

I n  a vacuum environment,  s p u t t e r i n g  w i t h  r a r e  gas i o n s  o r  h e a t i n g  

surfaces t o  h i g h  temperatures can remove contaminants t h a t  a r e  adsorbed on the  

surface of ceramics and me ta l s .  

ceramics and me ta l s  r e s u l t s  i n  s t r o n g  i n t e r f a c i a l  adhesion when two such 

s o l i d s  a r e  b rough t  i n t o  c o n t a c t  C101. 

Removing adsorbed f i l m s  from the su r faces  o f  

F i g u r e  2 p resen ts  t h e  p u l l - o f f  f o r c e  (adhesion)  for s i l i c o n  n i t r i d e - t o -  

meta l  c o n t a c t s  as a f u n c t i o n  of Young's modulus o f  t h e  me ta l s .  

t h i s  f i g u r e  for argon ion -spu t te r - c leaned  su r faces  i n d i c a t e  a decrease i n  

adhesion w i t h  an i nc rease  i n  Young's modulus - t h e  h i g h e r  the  Young's modulus, 

t h e  lower  t h e  adhesion. Note t h a t ,  a l t h o u g h  t h e  behav io r  o f  i r o n  and n i c k e l  

i s  anomalous, t h e  magnitude o f  Young's modulus i s  g e n e r a l l y  dependent on t h e  

The d a t a  of 
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electron configuration of the metal C l l l ;  its maximum value in a given period 

of the Periodic Table corresponds to the metal having the maximum number of 

unpaired d electrons. The minimum, near the end of each period, occurs for 

the element that has an s2p1 configuration. Young's modulus i s  also related 

surf ace t o  such physical, chemical, and mechanical properties as 

and cohesive energy, chemical stabi 1 i ty, and tensile and 

C11-151. 

Figure 3 presents the coefficient of friction for 

contacts as a function of shear modulus of the metals. 

ion-sputter-cleaned surfaces presented i n  figure 3 ind 

coefficient of friction with an increase in shear m o d u  

shear modu 

configurat 

surprising 

i nves t i gat 

metal. 

S 

shear modulus, 

shear strength 

licon carbide-bo-metal 

The data for the argon 

cate a decrease i n  

us of the metals. The 

us, like Young's modulus, has a marked dependence on the electron 

on of the metal. The similar shape of figures 2 and 3 is not 

since E = 2.6G [ l l l .  Further, all the sliding$ i n  this 

on involve adhesion at the contact area between the ceramic and 

On separation of the silicon carb 

the interfacial adhesive bonds between 

de and meta 

the silicon 

in sliding contact, both 

carbide and metal and the 

cohesive bonds in the metal were broken [161. In other words, the shear 

forces that broke both the interfacial adhesive bonds and the cohesive bonds 

in the metals were primarily responsible for the frictional force. 

examined metal failed i n  shear o r  tension at some of the real areas of contact 

where the interfacial bonds were stronger than the cohesive bonds i n  tne 

metal. The morphology revealed that all the silicon carbide surfaces 

contacted by the metals contained transferred films of metal. Metals that 

have a low shear modulus exhibit larger areas of metal transfer than those 

with a higher modulus. Such dependence of adhesion, friction, and metal 

transfer on shear modulus may arise from surface and cohesive energy as well 

The 
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as d u c t i l i t y  o f  t h e  me ta l s ;  t h e r e f o r e ,  i t  i s  i n t e r e s t i n g  to  compare the  

fo rego ing  f r i c t i o n  r e s u l t s ,  f o r  s i l i c o n  carb ide- to-meta l  c o n t a c t s ,  w i t h  

s u r f a c e  energy and hardness o f  me ta l s .  

F i g u r e  4 p resen ts  s u r f a c e  energy va lues  a t  room temperature from 

recommended va lues suggested by Tyson and Miedema C12,141. The s u r f a c e  energy 

f o r  t h e  me ta l s  increases w i t h  an i nc rease  i n  shear modulus. Note t h a t  Miedema 

1141 e s t i m a t e d  t h e  va lues  a t  room temperature from values o f  t h e  exper imenta l  

surface energy and e n t r o p y  by u s i n g  t h e  temperature dependence f a c t o r s .  

s u r f a c e  energy c o r r e l a t e d  w i t h  such thermochemical parameters f o r  me ta l s  as 

t h e  e l e c t r o n  d e n s i t y ,  t h e  e l e c t r o n  n e g a t i v i t y ,  and h e a t  s u b l i m a t i o n  C13,141. 

The c a l c u l a t e d  i d e a l  shear s t r e n g t h s  o f  t h e  me ta l s  were a l s o  c o r r e l a t e d  w i t h  

shear modulus C151 - t h e  h i g h e r  t h e  shear modulus, t h e  g r e a t e r  t h e  shear 

s t r e n g t h .  

The 

The adhesion and f r i c t i o n  o f  t h e  ceramic-to-metal  c o n t a c t s  were expected 

t o  i n c r e a s e  as t h e  s u r f a c e  energy ( i . e . ,  t h e  bond energy o f  me ta l s )  

i nc reased .  

o p p o s i t e  d i r e c t i o n ;  t hey  decreased w i t h  an i nc rease  i n  s u r f a c e  energy o f  

me ta l s .  I n  o t h e r  words, t h e  f r i c t i o n  was reduced w i t h  an i nc rease  i n  shear 

modulus, whereas t h e  su r face  energy i nc reased  as t h e  modulus va lue  i nc reased .  

Presumably, t h e  d u c t i l i t y  o f  me ta l s ,  t h a t  i s ,  t h e  de fo rma t ion  o f  me ta l s ,  has 

n o t  been considered here C6, 71. 

Bu t  f i g u r e s  2 t o  4 show t h a t  t he  adhesion and f r i c t i o n  go i n  the  

Because o f  t h e  marked d f f e r e n c e  i n  e l a s t i c  and p l a s t i c  d e f o r m a t i o n  of 

ceramics and s o f t e r  me ta l s ,  s o l i d - s t a t e  c o n t a c t  between t h e  two m a t e r i a l s  can 

r e s u l t  i n  c o n s i d e r a b l e  p l a s t i c  de fo rma t ion  o f  t h e  s o f t e r  me ta l .  T h i s  

d e f o r m a t i o n  can c o n t r i b u t e  t o  t h e  adhesion and f r i c t i o n  o f  t h e  m a t e r i a l s  

because i t  increases t h e  r e a l  c o n t a c t  area.  To g a i n  an unders tand ing  of 

i n t e r f a c e  de fo rma t ion  under t h e  a c t i o n  o f  a f r i c t i o n  f o r c e ,  i n d e n t a t i o n  

exper iments w e r e  conducted w i t h  t h e  metal  p i n  specimens. The hardness d a t a  

7 



( f i g .  5 (a ) )  i n d i c a t e  t h a t  a t  room temperature t h e  V i c k e r s  hardness o f  meta ls  

i nc reases  as the  shear modulus i nc reases .  F i g u r e  5(b)  presents  areas o f  

c o n t a c t ,  c a l c u l a t e d  from t h e  exper imenta l  d a t a  presented i n  f i g u r e  5 (a ) ,  as a 

f u n c t i o n  o f  shear modulus o f  t h e  me ta l .  

t h e  r a t i o  o f  normal l o a d  t o  hardness. The c a l c u l a t e d  area o f  c o n t a c t  i s  v e r y  

s t r o n g l y  dependent on t h e  shear modulus o f  t h e  me ta l ;  i t  decreases w i t h  

i n c r e a s i n g  shear modulus. 

i n c r e a s e  o f  shear modulus for  these me ta l s  i s  g r e a t e r  than t h e  corresponding 

i nc rease  i n  t h e  su r face  energy (bond energy) w i t h  shear modulus (see f i g s .  4 

and 5(b>>. Consequently, t h e  shear f o r c e  r e q u i r e d  t o  move t h e  metal  p i n  i n  a 

d i r e c t i o n  p a r a l l e l  t o  t h e  su r face  o f  s i l i c o n  c a r b i d e  decreases w i t h  i n c r e a s i n g  

shear modulus. 

Thus, t h e  f o r e g o i n g  r e s u l t s  show t h a t  such mechanical  f a c t o r s  as hardness a r e  

o f  g r e a t  importance C6,171. Dur ing  ceramic-to-metal  c o n t a c t ,  s t r o n g  bonds 

form between the  m a t e r i a l s .  These i n t e r f a c i a l  bonds a re  s t r o n g e r  than  t h e  

cohesive bonds i n  t h e  meta l  (as evidenced by t h e  t r a n s f e r r e d  m e t a l )  a t  t h e  

major  p a r t  o f  t h e  r e a l  a rea  o f  c o n t a c t .  

r o le  i n  adhesion and f r i c t i o n  and exceeds t h a t  o f  t h e  su r face  energy.  

The a rea  o f  c o n t a c t  was determined by 

The decrease i n  t h e  area o f  c o n t a c t  w i t h  an 

Th is  f a c t  i s  c o n s i s t e n t  w i t h  t h e  r e s u l t s  o f  f i g u r e s  2 and 3 .  

Hardness o f  me ta l s  p l a y s  an i m p o r t a n t  

5.1.2 Oxide ceramics 

The c o e f f i c i e n t s  o f  f r i c t i o n  f o r  o x i d e  ceramics such as manganese-zinc 

and n i c k e l - z i n c  f e r r i t e s  i n  c o n t a c t  w i t h  me ta l s  can a l s o  be c o r r e l a t e d  w i t h  

t h e  shear modulus o f  meta ls ,  as shown i n  f i g u r e s  6. Th i s  c o r r e l a t i o n  i s  

c o n s i s t e n t  w i t h  the  r e s u l t s  i n d i c a t e d  i n  f i g u r e  3. The c o e f f i c i e n t  o f  

f r i c t i o n  decreases w i t h  an i nc rease  i n  shear modulus. Again, hardness of  

me ta l s  i s  o f  g r e a t  importance t o  adhesion and f r i c t i o n  o f  t he  o x i d e  

ceramic-to-metal c o n t a c t s .  

Pepper C181 showed t h a t  when sapph i re  c o n t a c t s  meta l  a chemical  bond 

between t h e  meta l  atoms and t h e  oxygen i o n s  p l a y s  a role i n  t h e  shear s t r e n g t h  
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o f  t h e  sapphire-to-metal  c o n t a c t .  The shear s t r e n g t h  o f  t h e  sapphire-to-metal  

c o n t a c t  was c o r r e l a t e d  w i t h  t h e  f r e e  energy o f  f o r m a t i o n  o f  t h e  metal  o x i d e  

1183. F i g u r e  7 p resen ts  t h e  f r e e  energy o f  f o r m a t i o n  o f  t h e  lowest metal  

ox ides  as a f u n c t i o n  o f  shear modulus o f  t h e  meta ls  [191. 

f o r m a t i o n  o f  t h e  l owes t  metal  ox ides  decreases w i t h  an i nc rease  i n  shear 

modulus, as does the  f r i c t i o n .  The c o r r e l a t i o n s  shown i n  f i g u r e s  6 and 7 

c l e a r l y  i n d i c a t e  t h a t  t he  m e t a l - t o - f e r r i t e  adhesive bond a t  t h e  i n t e r f a c e ,  

l i k e  me ta l - to -sapph i re  c o n t a c t ,  i s  p r i m a r i l y  a chemical bond between the  metal  

atoms and the  l a r g e  oxygen anions o f  t h e  f e r r i t e  s u r f a c e .  The s t r e n g t h  o f  

t h i s  bond i s  r e l a t e d  t o  oxygen-to-metal bond s t r e n g t h  i n  t h e  meta l  ox ide .  

\ *  

The f r e e  energy of 

A l l  meta ls  shown i n  f i g u r e  6 adhered t o  and t r a n s f e r r e d  t o  t h e  s u r f a c e  o f  

t h e  f e r r i t e s  C201. I n  genera l ,  t h e  g r e a t e r  t h e  shear modulus, t h e  l e s s  

adhesion and metal  t r a n s f e r  t h e r e  i s  t o  t h e  f e r r i t e .  

5 .2  Ceramic-to-Magnetic Tape Contact  

F i g u r e  8 p resen ts  t h e  c o e f f i c i e n t s  o f  f r i c t i o n  for  v a r i o u s  tapes i n  

c o n t a c t  w i t h  t h e  n i c k e l - z i n c  f e r r i t e  as a f u n c t i o n  o f  t h e  complex modulus o f  

t h e  tapes b o t h  i n  d r y  n i t r o g e n  a t  atmospher ic p ressu re  and i n  vacuum. The 

h i g h e r  t h e  p a r t i c l e  l o a d i n g ,  t h e  g r e a t e r  i s  t h e  complex modulus o f  t h e  tape 

C81. 

The f r i c t i o n  p r o p e r t i e s  markedly depend on t h e  env i ronment .  I n  d r y  

n i t r o g e n  a t  atmospher ic pressure,  t he  c o e f f i c i e n t  o f  f r i c t i o n  i s  independent 

of t h e  complex modulus o f  t h e  tape ( i - e . ,  t h e  p a r t i c l e  l o a d i n g ) .  Since t h e  

adsorbate f i l m s  remain a t  t h e  i n t e r f a c e ,  t h e  b u l k  compos i t i on  o f  t h e  tapes 

does n o t  have much e f f e c t  on f r i c t i o n .  

I n  vacuum a t  1 pPa, however, t h e  c o e f f i c i e n t  o f  f r i c t i o n  f o r  t h e  tape i s  

dependent on t h e  complex modulus o f  t h e  tape ( i . e . ,  t h e  p a r t i c l e  l o a d i n g ) ,  as 

shown i n  f i g u r e  8.  The d a t a  o b t a i n e d  from t h e  exper iments conducted i n  vacuum 

a t  1 pPa r e v e a l  t h a t  t h e  c o e f f i c i e n t  o f  f r i c t i o n  decreases w i t h  i n c r e a s i n g  
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complex modulus. I n  o t h e r  words, t he  l o w e r i n g  o f  t h e  po lymer i c  b i n d e r  

c o n c e n t r a t i o n  o f  the  tape surface leads t o  low f r i c t i o n .  I n  vacuum, t h e  

adsorbate f i l m s  become d i s r u p t e d  o r  d i s lodged .  When t h i s  occu rs ,  c l e a n  

s o l i d - s t a t e  m a t e r i a l  c o n t a c t  can occu r  th rough  t h e  f i l m  a t  t h e  s l i d i n g  

i n t e r f a c e  because o f  breakup of these s u r f a c e  f i l m s .  Consequent ly,  t h e  b a s i c  

m a t e r i a l  p r o p e r t i e s  of t h e  tape become ex t reme ly  i m p o r t a n t  i n  adhesion and 

f r i c t i o n .  Since an i n c r e a s e  i n  p a r t i c l e  l o a d i n g  r e s u l t s  i n  a h i g h e r  complex 

modulus and t h e r e f 0 r e . a  lower  r e a l  area o f  c o n t a c t ,  t h e  tape w i t h  h i g h e r  

p a r t i c l e  l o a d i n g  has l e s s  f r i c t i o n .  

F i g u r e  9 presents  t h e  c o e f f i c i e n t s  o f  f r i c t i o n  f o r  as-received tapes i n  

c a n t a c t  w i t h  i on -spu t te r - c leaned  f e r r l  t e s  and w i t h  f e r r i  t e s  exposed t o  1000-L 

oxygen i n  vacuum a t  a p ressu re  of 30 nPa. 

s t r o n g l y  dependent on t h e  complex modulus of tapes, as i n d i c a t e d  i n  f i g u r e  9 - 
again,  t h e  g r e a t e r  t he  complex modulus, t h e  lower  t h e  c o e f f i c i e n t  o f  

f r i c t i o n .  

t h e  f e r r i t e  s t rengthened t h e  f e r r i t e - t o - t a p e  adhesion and inc reased  f r i c t i o n .  

Furthermore, t he  a d s o r p t i o n  of oxygen on t h e  tape and on i on -spu t te r - c leaned  

f e r r i t e  su r faces  i nc reased  t h e  c o e f f i c i e n t s  of f r i c t i o n .  A s i m i l a r  f r i c t i o n  

c h a r a c t e r i s t i c  for m e t a l - t o - f e r r i t e  c o n t a c t s  and meta l - to-sapphi re c o n t a c t s  

was a l s o  found by Pepper and t h i s  au tho r ,  r e s p e c t i v e l y  [18,201. 

6. CONCLUDING REMARKS 

The c o e f f i c i e n t  o f  f r i c t i o n  i s  

The d a t a  of  f i g u r e  9 a l s o  i n d i c a t e  t h a t  t h e  i o n - s p u t t e r  c l e a n i n g  o f  

Based on fundamental s t u d i e s  o f  adhesion and f r i c t i o n  o f  ceramics i n  

c o n t a c t  w i t h  meta ls  and po lymer i c  magnet ic tapes,  t h e  f o l l o w i n g  remarks can be 

made : 

1. For ceraml c-to-metal con tac ts ,  s t r o n g  bonds form between t h e  

m a t e r i a l s ,  and t h e  i n t e r f a c i a l  bonds a r e  s t r o n g e r  than t h e  cohesive bonds i n  

t h e  metal  a t  t he  major p a r t  o f  t h e  r e a l  a rea  o f  c o n t a c t .  Adhesion and 

f r i c t i o n  a r e  s t r o n g l y  dependent on t h e  d u c t i l i t y  of t h e  me ta l s .  Hardness o f  
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metals  i s  of paramount importance t o  adhesion and f r i c t i o n ,  exceeding t h a t  of 

t he  sur face  energy o f  meta ls .  

2 .  Adhesion, f r i c t i o n ,  sur face  energy, and hardness o f  a metal  a re  a l l  

r e l a t e d  t o  i t s  Young's modulus and shear modulus, which have a marked 

dependence on the e l e c t r o n  c o n f i g u r a t i o n  o f  t he  me ta l .  

of con tac t  w i t h  an inc rease i n  shear modulus i s  g r e a t e r  than the  cor respond ing  

inc rease i n  the sur face  energy (bond energy) o f  the meta ls  w i t h  i n c r e a s i n g  

shear modulus. Consequently, the  adhesion and f r i c t i o n  decrease w i t h  

i n c r e a s i n g  shear modulus. 

The decrease i n  area 

3 .  The meta ls  f a i l e d  i n  shear or t e n s i o n  a t  t he  major  p a r t  o f  t h e  r e a l  

areas of con tac t  where the i n t e r f a c i a l  bonds were s t ronger  than the  cohesive 

bonds i n  the  meta l .  In genera l ,  the  g r e a t e r  the  shear modulus, t he  l e s s  

adhesion and metal t r a n s f e r  t h e r e  i s  t o  the  ceramic.  

4. For ceramics i n  con tac t  w i t h  po lymer ic  magnet ic tapes, environment i s  

ex t remely  impor tan t .  For example, a n i t r o g e n  environment reduces adhesion and 

f r i c t i o n  i n  f e r r i t e s  c o n t a c t i n g  po lymer ic  tapes, whereas a vacuum s p a c e l i k e  

environment s t rengthens the  f e r r i t e - t o - t a p e  adhesion and increases  f r i c t i o n .  

The adhesion and f r i c t i o n  are  s t r o n g l y  dependent on the  p a r t i c l e  l o a d i n g  of 

the  tape.  An increase i n  magnetic p a r t i c l e  c o n c e n t r a t i o n  inc reases  the  

complex modulus o f  the  tape, thereby  r e s u l t i n g  i n  a lower  r e a l  area of  cor i tac t  

and lower f r i c t i o n .  Adhesion and f r i c t i o n  for  ceramic-to-tape con tac ts ,  l i k e  

ceramic-to-metal  con tac ts ,  a r e  thus r e l a t e d  t o  the  complex modulus of the tape. 
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